Pairs of valuations and the geometry of soluble groups
نویسنده
چکیده
We introduce the concepts of a pair of valuations and a good generating set and show how they can be used to prove geometric properties of soluble groups.
منابع مشابه
Quotient BCI-algebras induced by pseudo-valuations
In this paper, we study pseudo-valuations on a BCI-algebra and obtain some related results. The relation between pseudo-valuations and ideals is investigated. We use a pseudo-metric induced by a pseudovaluation to introduce a congruence relation on a BCI-algebra. We define the quotient algebra induced by this relation and prove that it is also a BCI-algebra and study its properties.
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملSome Structural Properties of Upper and Lower Central Series of Pairs of Groups
In this paper, we first present some properties of lower and upper central series of pair of groups. Then the notion of $n$-isoclinism for the classification of pairs of groups is introduced, and some of the structural properties of the created classes are proved. Moreover some interesting theorems such as Baer Theorem, Bioch Theorem, Hirsh Theorem for pair of groups are generalized...
متن کامل